yolov10/tests/test_model.py
Ayush Chaurasia 384f0ef1c6
Model interface enhancement (#106)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2022-12-28 13:35:01 +01:00

74 lines
1.5 KiB
Python

import torch
from ultralytics import YOLO
def test_model_forward():
model = YOLO()
model.new("yolov8n.yaml")
img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512)
model.forward(img)
model(img)
def test_model_info():
model = YOLO()
model.new("yolov8n.yaml")
model.info()
model.load("best.pt")
model.info(verbose=True)
def test_model_fuse():
model = YOLO()
model.new("yolov8n.yaml")
model.fuse()
model.load("best.pt")
model.fuse()
def test_visualize_preds():
model = YOLO()
model.load("best.pt")
model.predict(source="ultralytics/assets")
def test_val():
model = YOLO()
model.load("best.pt")
model.val(data="coco128.yaml", imgsz=32)
def test_model_resume():
model = YOLO()
model.new("yolov8n.yaml")
model.train(epochs=1, imgsz=32, data="coco128.yaml")
try:
model.resume(task="detect")
except AssertionError:
print("Successfully caught resume assert!")
def test_model_train_pretrained():
model = YOLO()
model.load("best.pt")
model.train(data="coco128.yaml", epochs=1, imgsz=32)
model.new("yolov8n.yaml")
model.train(data="coco128.yaml", epochs=1, imgsz=32)
img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512)
model(img)
def test():
test_model_forward()
test_model_info()
test_model_fuse()
test_visualize_preds()
test_val()
test_model_resume()
test_model_train_pretrained()
if __name__ == "__main__":
test()