mirror of
				https://github.com/THU-MIG/yolov10.git
				synced 2025-10-31 06:15:39 +08:00 
			
		
		
		
	 384f0ef1c6
			
		
	
	
		384f0ef1c6
		
			
		
	
	
	
	
		
			
			Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
		
			
				
	
	
		
			74 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| 
 | |
| from ultralytics import YOLO
 | |
| 
 | |
| 
 | |
| def test_model_forward():
 | |
|     model = YOLO()
 | |
|     model.new("yolov8n.yaml")
 | |
|     img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512)
 | |
|     model.forward(img)
 | |
|     model(img)
 | |
| 
 | |
| 
 | |
| def test_model_info():
 | |
|     model = YOLO()
 | |
|     model.new("yolov8n.yaml")
 | |
|     model.info()
 | |
|     model.load("best.pt")
 | |
|     model.info(verbose=True)
 | |
| 
 | |
| 
 | |
| def test_model_fuse():
 | |
|     model = YOLO()
 | |
|     model.new("yolov8n.yaml")
 | |
|     model.fuse()
 | |
|     model.load("best.pt")
 | |
|     model.fuse()
 | |
| 
 | |
| 
 | |
| def test_visualize_preds():
 | |
|     model = YOLO()
 | |
|     model.load("best.pt")
 | |
|     model.predict(source="ultralytics/assets")
 | |
| 
 | |
| 
 | |
| def test_val():
 | |
|     model = YOLO()
 | |
|     model.load("best.pt")
 | |
|     model.val(data="coco128.yaml", imgsz=32)
 | |
| 
 | |
| 
 | |
| def test_model_resume():
 | |
|     model = YOLO()
 | |
|     model.new("yolov8n.yaml")
 | |
|     model.train(epochs=1, imgsz=32, data="coco128.yaml")
 | |
|     try:
 | |
|         model.resume(task="detect")
 | |
|     except AssertionError:
 | |
|         print("Successfully caught resume assert!")
 | |
| 
 | |
| 
 | |
| def test_model_train_pretrained():
 | |
|     model = YOLO()
 | |
|     model.load("best.pt")
 | |
|     model.train(data="coco128.yaml", epochs=1, imgsz=32)
 | |
|     model.new("yolov8n.yaml")
 | |
|     model.train(data="coco128.yaml", epochs=1, imgsz=32)
 | |
|     img = torch.rand(512 * 512 * 3).view(1, 3, 512, 512)
 | |
|     model(img)
 | |
| 
 | |
| 
 | |
| def test():
 | |
|     test_model_forward()
 | |
|     test_model_info()
 | |
|     test_model_fuse()
 | |
|     test_visualize_preds()
 | |
|     test_val()
 | |
|     test_model_resume()
 | |
|     test_model_train_pretrained()
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test()
 |