yolov10/run_pgt_train.py
2024-11-01 11:19:22 -04:00

63 lines
2.7 KiB
Python

from ultralytics import YOLOv10, YOLO, YOLOv10PGT
# from ultralytics.engine.pgt_trainer import PGTTrainer
import os
from ultralytics.models.yolo.segment import PGTSegmentationTrainer
import argparse
from datetime import datetime
import torch
# nohup python run_pgt_train.py --device 7 > ./output_logs/gpu7_yolov10_pgt_train.log 2>&1 &
def main(args):
model = YOLOv10PGT('yolov10n.pt')
if args.pgt_coeff is None:
model.train(data=args.data_yaml, epochs=args.epochs, batch=args.batch_size)
else:
model.train(
data=args.data_yaml,
epochs=args.epochs,
batch=args.batch_size,
# amp=False,
pgt_coeff=args.pgt_coeff,
# cfg='pgt_train.yaml', # Load and train model with the config file
)
# If you want to finetune the model with pretrained weights, you could load the
# pretrained weights like below
# model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}')
# or
# wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt
# model = YOLOv10('yolov10n.pt', task='segment')
# Create a directory to save model weights if it doesn't exist
model_weights_dir = 'model_weights'
if not os.path.exists(model_weights_dir):
os.makedirs(model_weights_dir)
# Save the trained model with a unique name based on the current date and time
current_time = datetime.now().strftime('%Y%m%d_%H%M%S')
data_yaml_base = os.path.splitext(os.path.basename(args.data_yaml))[0]
model_save_path = os.path.join(model_weights_dir, f'yolov10_{data_yaml_base}_trained_{current_time}.pt')
model.save(model_save_path)
# torch.save(trainer.model.state_dict(), model_save_path)
# Evaluate the model on the validation set
results = model.val(data=args.data_yaml)
# Print the evaluation results
print(results)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Train YOLOv10 model with PGT segmentation.')
parser.add_argument('--device', type=str, default='0', help='CUDA device number')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size for training')
parser.add_argument('--epochs', type=int, default=100, help='Number of epochs for training')
parser.add_argument('--data_yaml', type=str, default='coco.yaml', help='Path to the data YAML file')
parser.add_argument('--pgt_coeff', type=float, default=None, help='Coefficient for PGT')
args = parser.parse_args()
# Set CUDA device (only needed for multi-gpu machines)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
main(args)