yolov10/docs/ru/models/yolov6.md
Glenn Jocher 16a13a1ce0
Update https://docs.ultralytics.com/models (#6513)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-11-22 20:45:46 +01:00

108 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
comments: true
description: Изучите Meituan YOLOv6 - современную модель обнаружения объектов, отличающуюся балансом между скоростью и точностью. Подробнее о функциях, предварительно обученных моделях и использовании Python.
keywords: Meituan YOLOv6, обнаружение объектов, Ultralytics, документация YOLOv6, двустороннее объединение, тренировка с использованием якорей, предварительно обученные модели, приложения в реальном времени
---
# Meituan YOLOv6
## Обзор
[Meituan](https://about.meituan.com/) YOLOv6 - это передовая модель обнаружения объектов, которая отлично сочетает в себе скорость и точность, что делает ее популярным выбором для приложений в реальном времени. Эта модель включает несколько значимых улучшений в своей архитектуре и схеме обучения, включая внедрение модуля двустороннего объединения (BiC), стратегию тренировки с использованием якорей (AAT) и улучшенный дизайн базовой и верхней частей для достижения передовой точности на наборе данных COCO.
![Meituan YOLOv6](https://user-images.githubusercontent.com/26833433/240750495-4da954ce-8b3b-41c4-8afd-ddb74361d3c2.png)
![Изображение примера модели](https://user-images.githubusercontent.com/26833433/240750557-3e9ec4f0-0598-49a8-83ea-f33c91eb6d68.png)
**Обзор YOLOv6.** Диаграмма архитектуры модели, показывающая переработанные компоненты сети и стратегии тренировки, которые приводят к значительному улучшению производительности. (a) Верхняя часть YOLOv6 (показаны N и S). Обратите внимание, что для M/L блок RepBlocks заменен на CSPStackRep. (b) Структура модуля BiC. (c) Блок SimCSPSPPF block. ([исходник](https://arxiv.org/pdf/2301.05586.pdf)).
### Основные функции
- **Модуль двустороннего объединения (BiC):** YOLOv6 включает модуль BiC в верхнюю часть детектора, улучшая сигналы локализации и обеспечивая прирост производительности при минимальном снижении скорости.
- **Стратегия тренировки с использованием якорей (AAT):** Эта модель предлагает AAT, чтобы воспользоваться преимуществами как якорных, так и бесконтурных парадигм без ущерба для эффективности вывода.
- **Улучшенный дизайн базовой и верхней частей:** Путем расширения YOLOv6 за счет добавления еще одной стадии в базовую и верхнюю часть модели достигается передовая производительность на наборе данных COCO при высоком разрешении входных изображений.
- **Стратегия самостоятельной стабилизации:** Внедряется новая стратегия самостоятельной стабилизации для повышения производительности меньших моделей YOLOv6, улучшая вспомогательное регрессионное ветвление во время тренировки и удаляя его во время вывода, чтобы избежать заметного снижения скорости.
## Метрики производительности
YOLOv6 предоставляет несколько предварительно обученных моделей различных масштабов:
- YOLOv6-N: 37.5% AP на наборе данных COCO val2017 при 1187 кадрах в секунду (FPS) с использованием графического процессора NVIDIA Tesla T4.
- YOLOv6-S: 45.0% AP при 484 FPS.
- YOLOv6-M: 50.0% AP при 226 FPS.
- YOLOv6-L: 52.8% AP при 116 FPS.
- YOLOv6-L6: Передовая точность в реальном времени.
YOLOv6 также предоставляет квантованные модели для разных точностей и модели, оптимизированные для мобильных платформ.
## Примеры использования
В этом примере приведены простые примеры тренировки и вывода с использованием YOLOv6. Полная документация по этим и другим [режимам](../modes/index.md) доступна на страницах документации [Predict](../modes/predict.md), [Train](../modes/train.md), [Val](../modes/val.md) и [Export](../modes/export.md).
!!! Example "Пример"
=== "Python"
Модели PyTorch, предварительно обученные с помощью файлов `*.pt`, а также файлы конфигурации `*.yaml` могут быть переданы в класс `YOLO()` для создания экземпляра модели на Python:
```python
from ultralytics import YOLO
# Построение модели YOLOv6n с нуля
model = YOLO('yolov6n.yaml')
# Отображение информации о модели (по желанию)
model.info()
# Тренировка модели на примере набора данных COCO8 в течение 100 эпох
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)
# Вывод результатов с использованием модели YOLOv6n на изображении 'bus.jpg'
results = model('path/to/bus.jpg')
```
=== "CLI"
Доступны команды интерфейса командной строки для непосредственного запуска моделей:
```bash
# Построение модели YOLOv6n с нуля и тренировка на примере набора данных COCO8 в течение 100 эпох
yolo train model=yolov6n.yaml data=coco8.yaml epochs=100 imgsz=640
# Построение модели YOLOv6n с нуля и вывод результатов на изображении 'bus.jpg'
yolo predict model=yolov6n.yaml source=path/to/bus.jpg
```
## Поддерживаемые задачи и режимы
Серия моделей YOLOv6 предлагает широкий выбор моделей с оптимизацией для [обнаружения объектов](../tasks/detect.md) высокой производительности. Они удовлетворяют различным вычислительным потребностям и требованиям точности, что делает их универсальными для широкого спектра приложений.
| Тип модели | Предварительно обученные веса | Поддерживаемые задачи | Вывод результатов | Валидация | Тренировка | Экспорт |
|------------|-------------------------------|--------------------------------------------|-------------------|-----------|------------|---------|
| YOLOv6-N | `yolov6-n.pt` | [Обнаружение объектов](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
| YOLOv6-S | `yolov6-s.pt` | [Обнаружение объектов](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
| YOLOv6-M | `yolov6-m.pt` | [Обнаружение объектов](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
| YOLOv6-L | `yolov6-l.pt` | [Обнаружение объектов](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
| YOLOv6-L6 | `yolov6-l6.pt` | [Обнаружение объектов](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
Эта таблица предоставляет подробный обзор вариантов моделей YOLOv6, подчеркивая их возможности в задачах обнаружения объектов и совместимость с различными операционными режимами, такими как [Вывод результатов](../modes/predict.md), [Валидация](../modes/val.md), [Тренировка](../modes/train.md) и [Экспорт](../modes/export.md). Это обширная поддержка позволяет пользователям полностью использовать возможности моделей YOLOv6 в широком спектре сценариев обнаружения объектов.
## Цитирования и благодарности
Мы хотели бы выразить благодарность авторам исследования за их значительный вклад в области обнаружения объектов в реальном времени:
!!! Quote ""
=== "BibTeX"
```bibtex
@misc{li2023yolov6,
title={YOLOv6 v3.0: A Full-Scale Reloading},
author={Chuyi Li and Lulu Li and Yifei Geng and Hongliang Jiang and Meng Cheng and Bo Zhang and Zaidan Ke and Xiaoming Xu and Xiangxiang Chu},
year={2023},
eprint={2301.05586},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
Исходную статью об YOLOv6 можно найти на [arXiv](https://arxiv.org/abs/2301.05586). Авторы сделали свою работу общедоступной, и код доступен на [GitHub](https://github.com/meituan/YOLOv6). Мы ценим их усилия в развитии этой области и доступности их работы для широкого сообщества.