2022-12-30 13:32:08 +01:00
2022-12-24 00:39:09 +01:00
2022-12-05 12:17:25 -08:00
2022-12-05 06:04:57 +05:30
2022-09-11 19:39:46 +03:00
2022-10-10 14:01:07 +02:00
2022-12-12 09:21:00 +05:30
2022-12-30 01:28:41 +01:00
2022-12-06 15:09:53 -08:00
2022-12-05 06:04:57 +05:30

Ultralytics CI

Install

pip install ultralytics

Development

git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .

Usage

1. CLI

To simply use the latest Ultralytics YOLO models

yolo task=detect    mode=train    model=yolov8n.yaml      args=...
          classify       predict        yolov8n-cls.yaml  args=...
          segment        val            yolov8n-seg.yaml  args=...
                         export         yolov8n.pt        format=onnx

2. Python SDK

To use pythonic interface of Ultralytics YOLO model

from ultralytics import YOLO

model = YOLO.new('yolov8n.yaml')  # create a new model from scratch
model = YOLO.load('yolov8n.pt')  # load a pretrained model (recommended for best training results)

results = model.train(data='coco128.yaml', epochs=100, imgsz=640, ...)
results = model.val()
results = model.predict(source='bus.jpg')
success = model.export(format='onnx')

If you're looking to modify YOLO for R&D or to build on top of it, refer to Using Trainer Guide on our docs.

Description
YOLOv10: Real-Time End-to-End Object Detection [NeurIPS 2024]
Readme AGPL-3.0 Cite this repository 14 MiB
Languages
Python 99.4%
Shell 0.3%
Dockerfile 0.3%