mirror of
https://github.com/THU-MIG/yolov10.git
synced 2025-05-23 21:44:22 +08:00

nosave
and noval
with save
and val
(#127)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Install
pip install ultralytics
Development
git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .
Usage
1. CLI
To simply use the latest Ultralytics YOLO models
yolo task=detect mode=train model=yolov8n.yaml args=...
classify predict yolov8n-cls.yaml args=...
segment val yolov8n-seg.yaml args=...
export yolov8n.pt format=onnx
2. Python SDK
To use pythonic interface of Ultralytics YOLO model
from ultralytics import YOLO
model = YOLO.new("yolov8n.yaml") # create a new model from scratch
model = YOLO.load(
"yolov8n.pt"
) # load a pretrained model (recommended for best training results)
results = model.train(data="coco128.yaml", epochs=100, imgsz=640, ...)
results = model.val()
results = model.predict(source="bus.jpg")
success = model.export(format="onnx")
If you're looking to modify YOLO for R&D or to build on top of it, refer to Using Trainer Guide on our docs.
Description
YOLOv10: Real-Time End-to-End Object Detection [NeurIPS 2024]
Languages
Python
99.4%
Shell
0.3%
Dockerfile
0.3%