yolov10/docs/guides/azureml-quickstart.md
Ophélie Le Mentec 602022a56e
Add AzureML Quickstart Guides (#4772)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2023-09-07 01:15:18 +02:00

4.0 KiB

comments description keywords
true Azure Machine Learning YOLOv8 quickstart Ultralytics, YOLO, Deep Learning, Object detection, quickstart, Azure, AzureML

YOLOv8 🚀 on AzureML

Note that this guide is only for quick trials from a compute terminal or from a Notebook. If you want to unlock the full power AzureML, you can find the documentation to:

Prerequisites

You need an AzureML workspace.

Create a compute instance

From your AzureML workspace, select Compute > Compute instances > New, select the instance with the resources you need.

create-compute-arrow

Quickstart from Terminal

Start your compute and open a Terminal:

open-terminal

Create virtualenv

Create your conda virtualenv and install pip in it:

conda create --name yolov8env -y
conda activate yolov8env
conda install pip -y

Install the required dependencies:

cd ultralytics
pip install -r requirements.txt
pip install ultralytics
pip install onnx>=1.12.0

Perform YOLOv8 tasks

Predict:

yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

Train a detection model for 10 epochs with an initial learning_rate of 0.01:

yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01

You can find more instructions to use the Ultralytics cli here.

Quickstart from a Notebook

Create a new IPython kernel

Open the compute Terminal.

open-terminal

From your compute terminal, you need to create a new ipykernel that will be used by your notebook to manage your dependencies:

conda create --name yolov8env -y
conda activate yolov8env
conda install pip -y
conda install ipykernel -y
python -m ipykernel install --user --name yolov8env --display-name "yolov8env"

Close your terminal and create a new notebook. From your Notebook, you can select the new kernel.

Then you can open a Notebook cell and install the required dependencies:

%%bash
source activate yolov8env
cd ultralytics
pip install -r requirements.txt
pip install ultralytics
pip install onnx>=1.12.0

Note that we need to use the source activate yolov8env for all the %%bash cells, to make sure that the %%bash cell uses environment we want.

Run some predictions using the Ultralytics CLI:

%%bash
source activate yolov8env
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

Or with the Ultralytics Python interface, for example to train the model:

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.pt")  # load an official YOLOv8n model

# Use the model
model.train(data="coco128.yaml", epochs=3)  # train the model
metrics = model.val()  # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
path = model.export(format="onnx")  # export the model to ONNX format