yolov10/docs/guides/azureml-quickstart.md
Ophélie Le Mentec 602022a56e
Add AzureML Quickstart Guides (#4772)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
2023-09-07 01:15:18 +02:00

123 lines
4.0 KiB
Markdown

---
comments: true
description: Azure Machine Learning YOLOv8 quickstart
keywords: Ultralytics, YOLO, Deep Learning, Object detection, quickstart, Azure, AzureML
---
# YOLOv8 🚀 on AzureML
Note that this guide is only for quick trials from a compute terminal or from a Notebook. If you want to unlock the full power AzureML, you can find the documentation to:
- [Create a data asset](https://learn.microsoft.com/azure/machine-learning/how-to-create-data-assets)
- [Create an AzureML job](https://learn.microsoft.com/azure/machine-learning/how-to-train-model)
- [Register a model](https://learn.microsoft.com/azure/machine-learning/how-to-manage-models)
- [Train YOLOv8 with the AzureML Python SDK](https://medium.com/@ouphi/how-to-train-the-yolov8-model-with-azure-machine-learning-python-sdk-8268696be8ba)
- [Train YOLOv8 with the Azureml cli](https://medium.com/@ouphi/how-to-train-the-yolov8-model-with-azureml-and-the-az-cli-73d3c870ba8e)
## Prerequisites
You need an [AzureML workspace](https://learn.microsoft.com/azure/machine-learning/concept-workspace?view=azureml-api-2).
## Create a compute instance
From your AzureML workspace, select Compute > Compute instances > New, select the instance with the resources you need.
<img width="1741" alt="create-compute-arrow" src="https://github.com/ouphi/ultralytics/assets/17216799/3e92fcc0-a08e-41a4-af81-d289cfe3b8f2">
## Quickstart from Terminal
Start your compute and open a Terminal:
![open-terminal](https://github.com/ouphi/ultralytics/assets/17216799/635152f1-f4a3-4261-b111-d416cb5ef357)
### Create virtualenv
Create your conda virtualenv and install pip in it:
```bash
conda create --name yolov8env -y
conda activate yolov8env
conda install pip -y
```
Install the required dependencies:
```bash
cd ultralytics
pip install -r requirements.txt
pip install ultralytics
pip install onnx>=1.12.0
```
### Perform YOLOv8 tasks
Predict:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
Train a detection model for 10 epochs with an initial learning_rate of 0.01:
```bash
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01
```
You can find more [instructions to use the Ultralytics cli here](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-cli).
## Quickstart from a Notebook
### Create a new IPython kernel
Open the compute Terminal.
![open-terminal](https://github.com/ouphi/ultralytics/assets/17216799/635152f1-f4a3-4261-b111-d416cb5ef357)
From your compute terminal, you need to create a new ipykernel that will be used by your notebook to manage your dependencies:
```bash
conda create --name yolov8env -y
conda activate yolov8env
conda install pip -y
conda install ipykernel -y
python -m ipykernel install --user --name yolov8env --display-name "yolov8env"
```
Close your terminal and create a new notebook. From your Notebook, you can select the new kernel.
Then you can open a Notebook cell and install the required dependencies:
```bash
%%bash
source activate yolov8env
cd ultralytics
pip install -r requirements.txt
pip install ultralytics
pip install onnx>=1.12.0
```
Note that we need to use the `source activate yolov8env` for all the %%bash cells, to make sure that the %%bash cell uses environment we want.
Run some predictions using the [Ultralytics CLI](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-cli):
```bash
%%bash
source activate yolov8env
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
Or with the [Ultralytics Python interface](https://docs.ultralytics.com/quickstart/#use-ultralytics-with-python), for example to train the model:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.pt") # load an official YOLOv8n model
# Use the model
model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") # export the model to ONNX format
```